Max-margin Multiple-Instance Learning via Semidefinite Programming
نویسنده
چکیده
In this paper, we present a novel semidefinite programming approach for multiple-instance learning. We first formulate the multipleinstance learning as a combinatorial maximummargin optimization problem with additional instance selection constraints within the framework of support vector machines. Although solving this primal problem requires non-convex programming, we nevertheless can then derive an equivalent dual formulation that can be relaxed into a novel convex semidefinite programming (SDP). The relaxed SDP has O(T ) free parameters where T is the number of instances, and can be solved using a standard interior-point method. Empirical study shows promising performance of the proposed SDP in comparison with the support vector machine approaches with heuristic optimization procedures.
منابع مشابه
A convex relaxation for weakly supervised classifiers
This paper introduces a general multi-class approach to weakly supervised classification. Inferring the labels and learning the parameters of the model is usually done jointly through a block-coordinate descent algorithm such as expectation-maximization (EM), which may lead to local minima. To avoid this problem, we propose a cost function based on a convex relaxation of the soft-max loss. We t...
متن کاملStrengthened Semidefinite Programming Relaxations for the Max-cut Problem
In this paper we summarize recent results on finding tight semidefinite programming relaxations for the Max-Cut problem and hence tight upper bounds on its optimal value. Our results hold for every instance of Max-Cut and in particular we make no assumptions on the edge weights. We present two strengthenings of the well-known semidefinite programming relaxation of Max-Cut studied by Goemans and...
متن کاملConvex Perturbations for Scalable Semidefinite Programming
Many important machine learning problems are modeled and solved via semidefinite programs; examples include metric learning, nonlinear embedding, and certain clustering problems. Often, off-the-shelf software is invoked for the associated optimization, which can be inappropriate due to excessive computational and storage requirements. In this paper, we introduce the use of convex perturbations ...
متن کاملA 7/8-Approximation Algorithm for MAX 3SAT?
We describe a randomized approximation algorithm which takes an instance of MAX 3SAT as input. If the instance—a collection of clauses each of length at most three—is satisfiable, then the expected weight of the assignment found is at least 7=8 of optimal. We provide strong evidence (but not a proof) that the algorithm performs equally well on arbitrary MAX 3SAT instances. Our algorithm uses se...
متن کاملInformation Theoretical Clustering via Semidefinite Programming
We propose techniques of convex optimization for information theoretical clustering. The clustering objective is to maximize the mutual information between data points and cluster assignments. We formulate this problem first as an instance of max k cut on weighted graphs. We then apply the technique of semidefinite programming (SDP) relaxation to obtain a convex SDP problem. We show how the sol...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009